

IKONOS-based Simulations of Landsat 7 VNIR Data: Comparison with Actual, Coincident Images

Slawomir Blonski

Lockheed Martin Space Operations
Commercial Remote Sensing Program
NASA Stennis Space Center

March 19 - 21, 2001

phone: (228) 688-1944

e-mail: sblonski@ssc.nasa.gov

Contributors

Stennis Space Center

Robert Ryan LMSO, Stennis Mary Pagnutti LMSO, Stennis Charles Smith LMSO, Stennis

Vicki Zanoni NASA, Stennis Tom Stanley NASA, Stennis

Robert Schowengerdt Stephen Schiller Univ. of Arizona
South Dakota State Univ.

IKONOS V&V: Landsat 7 Simulations

- IKONOS images were used to simulate four VNIR bands of Landsat 7 level 1G images (similar processing level: radiometric correction, georeferenced with cubic-convolution resampling, UTM projection)
- In year 2000, 92% of Landsat 7 images distributed by USGS EROS Data Center were on the level 1G
- Simulations validated by comparing results with actual coincident Landsat 7 images
- Results provide insights on radiometric calibration, spatial resolution, and geolocation accuracy of the image products

December 14, 2000 Distance of 35 km

Simulation Algorithm: PSF Synthesis

Stennis Space Center

For each spectral band, the Landsat 7 image (*I'*) is simulated by linear combination of the IKONOS image (*I*) pixels:

$$I'_{kl} = rac{c_{ijkl}I_{ij}}{c_{ijkl}}$$

The coefficients c_{ijkl} are found independently for each Landsat 7 pixel by solving (in the least squares sense) for a given set of points (x, y) the following equation which expresses an effective point spread function (PSF') of the Landsat 7 image as a linear combination of the IKONOS image PSF's:

$$PSF'(x-x_{l}, y-y_{k}) = c_{ijkl}PSF(x-x_{j}, y-y_{i})$$

Comparison of Spectral Response

Image Overlap: Brookings, SD

Stennis Space Center

Images acquired on June 30, 2000

IKONOS

po_41229 17:12 UTC 4 m GSD

Landsat 7

p29r29 17:03 UTC 30 m GSD

Both image products in map orientation (north up)

Geolocation difference

Band 1: 113 m [-11.25, -112.50] Band 2: 109 m [-11.25, -108.75] Band 3: 109 m [-11.25, -108.75] Band 4: 109 m [-7.50, -108.75]

Image Comparison: South Dakota

Actual Landsat 7 image

Simulated Landsat 7 image

Image Detail Comparison

IKONOS image

Simulated Landsat 7 image

Actual Landsat 7 image

Stennis Space Center

Based on updated IKONOS radiometric calibration coefficients:

 $L = DN / 630 \text{ sr} \cdot \text{cm}^2 \cdot \text{mW}^{-1}$

- Dispersion of points on the scatter plot due to noise and geolocation differences
- Presence of saturated Landsat 7 pixels
- Nonlinear response of Landsat 7 at higher radiance most likely due to saturation of the original L7 pixels (before resampling to L1G)

Stennis Space Center

Based on updated IKONOS radiometric calibration coefficients:

L = DN / 650 sr·cm²·mW⁻¹

- Dispersion of points on the scatter plot due to noise and geolocation differences
- Presence of saturated Landsat 7 pixels
- Nonlinear response of Landsat 7 at higher radiance most likely due to saturation of the original L7 pixels (before resampling to L1G)

Stennis Space Center

Based on updated IKONOS radiometric calibration coefficients:

 $L = DN / 840 \text{ sr} \cdot \text{cm}^2 \cdot \text{mW}^{-1}$

- Dispersion of points on the scatter plot due to noise and geolocation differences
- Presence of saturated Landsat 7 pixels
- Nonlinear response of Landsat 7 at higher radiance most likely due to saturation of the original L7 pixels (before resampling to L1G)

Stennis Space Center

Based on updated IKONOS radiometric calibration coefficients:

 $L = DN / 750 \text{ sr} \cdot \text{cm}^2 \cdot \text{mW}^{-1}$

- Dispersion of points on the scatter plot due to noise and geolocation differences
- Nonlinear response of Landsat 7 at higher radiance most likely due to saturation of the original L7 pixels (before resampling to L1G)

Sensitivity to Radiometric Calibration

Stennis Space Center

Use of initial IKONOS radiometric calibration coefficients result in distorted scatter plots for bands 2, 3, and 4

Different Image Orientation

Stennis Space Center

The simulations were also conducted for images with different orientation:

- IKONOS
 po_41229 17:12 UTC
 4 m GSD
 map (north up) orientation
- Landsat 7
 p29r29 17:03 UTC
 28.5 m GSD
 nominal (satellite)
 orientation

Geolocation difference

Band 1: 168 m [-14.66, -167.40] Band 2: 168 m [-14.66, -167.40] Band 3: 168 m [-14.66, -167.40] Band 4: 168 m [-14.66, -167.40] Geolocation difference is still within the limits given by the geometric accuracy of Landsat 7 level 1G and IKONOS standard original image products (250 m)

Image Comparison: Different Orientation

Actual Landsat 7 image

Simulated Landsat 7 image

Radiometric Comparison: Orientation

Stennis Space Center

For the case when the input IKONOS image has a different orientation than the output Landsat 7 image, the scatter plots are more dispersed than in the case of images with the same orientation

Effect of Spatial Resolution

Image Comparison: MTFC On / Off

Simulated Landsat 7 image created from the IKONOS image processed with the MTF compensation

Simulated Landsat 7 image created from the IKONOS image processed without the MTF compensation

Radiometric Comparison: MTFC On / Off

Stennis Space Center

Band 4

Image Overlap: Florida

Stennis Space Center

Images acquired on September 7, 2000

• IKONOS

po 45306 15:56 UTC 4 m GSD

• Landsat 7

p16r43 15:47 UTC 30 m GSD

Both image products in map (north up) orientation

Geolocation difference

Band 1: 0 m

Band 2: 0 m

Band 3: 0 m

Band 4: 0 m

Image Comparison: Florida

Actual Landsat 7 image

Simulated Landsat 7 image

Radiometric Comparison: Florida

Stennis Space Center

Orthogonal streaks are due to development and movement of clouds during the time between acquisitions of the two images

Image Overlap: Oklahoma

Stennis Space Center

Images acquired on May 22, 2000

IKONOS

po 37741 16:52 UTC 4 m GSD

• Landsat 7

p28r35 16:59 UTC 30 m GSD

Both image products in map (north up) orientation

Geolocation difference

Band 1: 0 m Band 2: 0 m Band 3: 0 m Band 4: 0 m

Image Comparison: Oklahoma

Actual Landsat 7 image

Simulated Landsat 7 image

Radiometric Comparison: Oklahoma

Stennis Space Center

Difference in atmospheric conditions (high cirrus clouds) resulted in attenuation of Landsat 7 at-sensor radiance and increased scattering

Image Overlap: Oregon

Stennis Space Center

Images acquired on August 8, 2000

IKONOS

po 45281 19:13 UTC 4 m GSD

• Landsat 7

p46r29 18:47 UTC 30 m GSD

Both image products in map (north up) orientation

Geolocation difference

Band 1: 47 m [45.00, -15.00] Band 2: 51 m [48.75, -15.00] Band 3: 47 m [45.00, -15.00] Band 4: 47 m [45.00, -15.00]

Image Comparison: Oregon

Actual Landsat 7 image

Simulated Landsat 7 image

Radiometric Comparison: Oregon

Stennis Space Center

Local differences in pixel geolocation create characteristic dispersion in the scatter plots

Final Remarks

- IKONOS images can be accurately transformed to mimic VNIR image data created by Landsat 7
- Mitigation of effects created by differences in acquisition time (solar angle), collection geometry (azimuth and elevation angle), and spectral response may be needed to achieve the accurate results
- The simulations become less accurate when atmospheric conditions are different (clouds) or when terrain relief creates local geolocation differences